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COMPLETE CLASSIFICATION OF (24,12) AND (22,11) SELF-DUAL CODES

by

Vera Pless
Project MAC, MIT, Cambridge, Massachusetts

and

N. J. A, Sloane
* Bell Laboratories, Murray Hill, N. J.

l. Introduction

In spite of 25 years of research ([2], [31]), even
the codes of only moderate length, up to 50 say, are a long
way from being understood. Slepian [38] used Pélya's
counting theorem to find the number of inequivalent codes
of length n and dimension k. But the enumeration by length,
dimension and minimum distance seems much more difficult.

Some results on the enumeration of self-dual codes (C = Cl)
have been given in [24], [32], [33], [35]; and in [3l4] Pless
has classified and enumerated all self-dual codes of length

n < 20. 1In the present paper we first give several new
general theorems (§3-§6) including a canonical form for self-
orthogonal codes generated by codewords of weight 4(Th. 7.5).

We then aprly these theorems to enumerate all self-dual codes
of length 22 and 24 (§7, §8). For each code we give the orier
of its group, the number of codes equivalent to it, and its
welght distribution. These codes provide 22 and 24 dimensional

representations over GF(2) of their groups. There is a
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unique self-dual code of length 24 and minimum distance 6;
its group is a maximal subgroup of mzu.

. The numbers of inequivalent codes are as follows.
; et 24 6810 12 14 16 18 20 22 2k
Indecomposable codes 1 001 O 1 1 2 2 6 826

All Codes TR RS O S I R L O TGN O 5

If we require that the welghts of codewords be divisible by
4, the rorresponding numbers are:
Length n & IlE 2
Indecomposable codes 1 A 1
All Codes 1 & 9
The 9 codes of length 24 with weights divisible by 4 were
first found by J. H. Conway (unpublished). Niemeier
([29], see also [28]) has found that there are 2L inequivalcnt
even unimodular lattices in dimension 24, of which § correspond
to these codes,

[34] also classifies [n, % (n-1)] self-orthogonal
codes (C(: Cl) for n = 1,3,...,19. Although we have not
classified the [21, 10] or [23, 11] self-orthogonal codes,
Tables I, IT would be of considerable help in doing so.

§2. Terms from Coding Theory

For standard coding tl.zory terms see [2], [31].

All codes are binary and linear. An [n,k,d](or [n,k] for

short) code has length n, dimension k, and (minimum) distance

exactly d, and is a subspace of F', where F = 10,1}. [ uf

Y T N | S e TOL P 1At T O TN R e ]
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denotes the weight of u, anduv = (wv,.....uv ), ol

5.0.

vectors of a self orthogonal code have wed g htisditvils A biiel by 7

(The first row of the circulant on the right of (2.2) has 1's

at the quadratic residues modulo 11.)

-----
.......
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dual code to C. A code is self-orthogrnal (SrLoNEre

! cC ¢, 1t is self-dual if ¢ - ¢\, 1ne deficiency of a

code is b = % NE=KEREo AN SellE=dtal Mcodeln s even,

0, and the weight of every codeword is divisible by 2.

It is possible, and interesting, to require that the weight
of every codeword be divisible by 4, in which case n must

| by a multiple of & (c.f. Th. 2.5). Note that if the busis

]
o

| &, then all the codewords have this TG I

Three important self-dual code are:
(1) The [2, 1, 2] code C, = {00, 11].
(11) The [8, 4, 4] Hamming code lig, which is spanned

by the rows of its generator matrix

1T LS ]
LSS R (2.1}
P i L2
1 1 1 I

(Blanks denote zeros.)
(1ii) The [2)t, 12, 8] Golay code Gy, with generator
matrix given by (°.2)([9]).

{1 =99 T4 e A A
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(2.2)
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The (symmetry) group G (C) of C consists of all

permutations of the coordinates which send codewords into

oo

codewords (i1.e. fix C setwise). G (C) is a supgroup of the
symmetric group Sn. E.g. G (02) is 22, the cyclic group
of order 2; G (E8) is the general affine group ( 03(2) of

order 1344 (all transformations ¥ — X A + b where A is

g i 23 bt M s R o i

an invertible 3x3 matrix); and G (G,,) is the Mathieu group

Iy, of order 219,33, 5.7. 11.23  There is an extensive s

literature on Geu’ meh’ and the associated Stelner system

and Leech lattice - see references 1,3,7-10,15,16,19,21,
e, 33,39, 10,042,043,

T™wo codes C, C! are equivalent if there exists

a permutation in Sn sending C into C!. The size of the

equivalence class continuing C is n! + order of G(c).

'he direct sum of codes C[n, k, d} and C’[n’, k7, d']
is the [n+n’, k+k’, min(d,d’ = :
( )] code C & ¢ [(ul...unvl...vn).

(u]...nn)sC, (vl...vn)EC'}. C ® C will be written 2C, etc.

[f D can be written C & C’ it is called decomposable,

otherwise indecomposable ([38]).

If G, ¥ are groups we write § x M for their direct
, k
product, G for Gx...dj(k factors), and G.H for a semidirect

product.,

lemma 2.3 If C = Cl @ ... & Ck where the Ci are indecomposable

and equivalent then G(c) = Q(Ci)k-Sk

il Ve A Ve s VUi e B S r B b o i SR 2 kvl s W



Lemma 2.4 ILet C = D, & ... @ D, where each D; is a direct
sum of equivalent codes, and for i 7 J no summand of Di is

L

equivalent to a summand of DJ. Then

G’(C) E C’(Di)'

—Je
}_—I

iR=

Let us say that a self-orthogonal code has property
P(d,8) if it has minimum distance > 4 and all weights are
divisible by 8. Then it is worth mentioning that the number
of indecomposable codes with property P(d,a) and the total
number of all such codes are related by exacuily the same
Riddell-Gilbert formula (([6], [11], [12}, [36 p. 1477])
which relates the numbers of connected graphs and all graphs.

The weight distribution of C consists of the nwrhors

Qs v« vs Oy where ay is the number of codewords of weight. i. The

weight enumerator of C is the polynomial

n

o(C) = w(C; x) = Ez oixi. E.g. o(Cy) =1 + %2, w(Eg) =
i=0

1+ ll«thL + x8, w(GQA) =1 + 759x8

+ 2576x12 + 759x16 + xzh.

Theorem 2.5 (Gleason [13]; see also [4], [14], (23], [25])
(a) The weight enumerator of a self dual code is a polynomial
in o(Cy) and w(Eg). (b) If in addition the weight of every
codeword is multiple of 4, then the weight enumerator is a
polynomial in w(Eg) and w (Goy) -

Notation Usually capital Latin letters

(A2ﬂ"") denote codes, the subscript giving

LA .fi
"
T T L T T R

Nl Gl 0 L

|
|
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E the length. dn’ e, are special codes, & 1, a, a’, b, c are
special vectors (see §6). Yoo @nd y,) are special integers.
Capital seript letters (méu,...) denote groups.

§3 General Enumeration Theorems

IDIZERNREY, fitels (O g 1 & % n,

the class of self-orthogonal [n,k] codes,

o
=
-
e
]

a
e
[

= subclass of ¢n K of codes which contain 1,
] il (30

37 = subclass of ¢ of codes in which every codeword
n,k n, k

has weight divisible by 4,

L wNT
R e T g 1

b

3 n, k = subclass of Wn,k of codes which contain 1.

il ’

] Then ¢ 1 = & 1 1is the class of self dual codes of length n.
1 n,sn n,sn

The fol.owing results are useful for enumerating self dual

codes. Some of these results appeared in [24], [32], [33].

They are all proved by the methods of [24], [32], i.e. by

induction on k. An empty product is equal to 1.

[4
Theorem 3.1 Iet n be even and Ced)n g* The number of codes
2

’
in ¢n,k(k > s8) which contain C is

k" -l r_,n_gs_gj L. l

j=o  2d*l _ 4

Cor. 3.2 [24] Let n be even and CEcbn o The number of codes

3
[
3 in & 1 which contain C is
n,zn




i~

n_ﬂs (25+1).

J=1

Cor. 3.3 [32] The total number of codes in @él

is
=N
>

1

Erﬁl (23 +1)

J=1
Cor. 3.4 The total number of codes in o

k is

=1 QH-QJ_l

3 if n even, (O}, alit’ 118y | @rekel
J=1 2Y-1

’
Theorem 3.5 ILet Ceo -® .  The number of codes in
NS S

!
®n,k " ®n,k (k > s) which contain C is

i 1 -5 2n-2s-2j+l _ _
. (n even), : (n odd).
=1 29 -1 j=1 i . g

!
Cor. 3.6 The total number of codes in ¢n,k - ¢n,k i

NI EEE AL |
ol 2 3 (n even), 'ﬁ =y L (n odd).
SEL @t - g gt 2d oS
Cor. 3.7 Let n be even and Ced = @l . The number of
—_— n,s NS

codes in O (k > s) which contain C is
3

k-g-1 i 7 i )
(L | (e“‘ﬂs"QJ-l}/ 1 (29-1).
J=1 j=1

iz 2
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Cor. 3.8 [32] If n ic even, the total number of codes in

&,k 18

(Cals ) ‘Tﬂl (2“'2*7‘-1}//}?" (29-1).

J:l J:l

For codes with weights divisible by 4 we do not

give as much detail.

!
Theorem 3.9 Let n be a multiple of 8, and Cey, o+ The number
3

[4 ’
of codes in B D T (k > s) which contain C is

(gn-s-k_

Q%n-k) J‘ 2 .

Cor. 3.10 Same hypothesis as Th. 3.9. Then the number of

’
codes in ¥, (k > s) which contain C is
2

1 1 K-g-1 g = K
(25n-s_1)(22n—k+1) ﬁ (2r1-2s-23_1)// ﬁ_[s (2‘]_1)
J=1 / J=1

S TRAT i A s e e

Cor.3.11 [24] Same hypothesis as Th. 3.9. The number of

gt e

(4
codes in Wn 1. Which contain C is
2

sn
in-g-1 .
ﬁ (29+41).

J=0 3

i

i

Cor. 3.12 [24] If n is a multiple of 8, the total number

’
of codes 1n Yn,%n is j

I
=2 ’ -
nﬂ (29+1). ;
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§4. The Sum of all Weight Enumerators

Let :

o (x) = E: w(C) and T, (x) = ;z w(C),

CE@n,%n CEWn,%n ‘ﬁ

giv.ng the sum of the weight enumerators of all self dual 1
codes of length n, and the corresponding sum when the
weights are divisible by 4.

Theorem 4.1 (a) For n even,

3
n -4
2
1

She . 4 ot f
T @Iy 2™ ™ + ) 3yt
J=1

J. i ‘ b
efi i

Q
=
—~
=
~—
]

n
LN 3 :
g J n-2 n \ B
T, (%) = II (2+1)°| 2 (T+x7) + / ()=
J=0 473
Proof (a). Write
Ti N u
o (x) = 2; }J xl |
Ce@n,%n ue
and use Cors. 3.2, 3.3. Similarly (b) follows from Cors. =.11,

8RO
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Examples
og (x) = 15(9+28x2+70xu+28x6+9x8),
T (x) = 30(1+1x 45y,
ooy (x) = 395&%%$L5§5 ygu(2ou9+276x2+1o626x”+13u,596x6+735,u71x8
+1,961,255x %42, 70k, 15631241, 961, 256 41
+...+x2u),
1, (%) = 282028 (100541062654 4735, 4715842, 70k, 156512
Toul¥) = =T Yoy SR 0RO
+735,u71x16+. 3 .+x24),
where

You = 1.3.5.7. ... .21.23 = 316,234, 143,225. (4.2)

§5. Codes with Minimum Distance at least U

Let C be a s.0. code of length n with minimum distance 2.

Lemma 5.1 C is dccomposable if n > 2.
Proof. Iet u = (ul,...,un) eC have weight 2. 1If veC, since
uv =0, [vu| =0or 2. Let D={vec: |vNu| = 0}. Then
= pl (u4D). Let D’ be obtained from D by deleting the
two coordinates i for which u; = 1. Then C=D & C

= {00, 11}.

2)
€2
Lemma 5.2 All codewords of weight 2 in C are nonzero on

disjoint sets of coordinates.

k.
i
¥
1
3
e
<1k
b
k
A
K
Pt

> lah i LS AR T S et i Bl s - i Dok i oo T B kel L b S s L s e T S s e i

- . ST TR L ORI o
i ol | e L0 oy i
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Theorem 5.3 Let n be even. The number of s.o. [n, n-v] codes

with minimum distance > 4 is

n/2 ;
s e SR ;
it 2 B (=R )Tl b
where j

, g =3l ) / n=r 1

a(n,r) = (’21-—:]_) Ill( (Qn—QJ_l)/ !] (2,3_1).
J=d /=]

Proof. Let c(n,r,i) be the number of s.o. [n, n-r] codes

containing i codewords of weight 2. [rom Cor. % ol

c{n-21, r,0),
therefore

o

vt Gyt ¢(d1.0) = a(n,r)

no ‘*:3
N o=
]
[_\/'

The coefficients on (he left are those of the Hermite polynomial

H (-x)[20]. The desircd result rollow: Crom the orthogonalily

of these polynomials.

b st o R e e
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§6. Codes With Minimum Distance bvactly 4

For n = 4,6,8,... let d, bethes.o.[n, in-1]

code with generator matrix

3 2 s T 7]
? T
d : S
3 n i
E | L ke AR L
1
; L IR RIS TR Il)
]
f d may also be obtained from the [3n, #n-1] code consisting
; of all vectors of even weight, upon replacihg O by 00 and 1
{ by 11. dn has deficiency 1, weight enumerator

%[(1+X2)n/2+(l—xg)n/2], and dual code

di=dnb’MH%)U(bmnﬂJ(a+%ﬂ (6.1)
where

a = 101010...10,

b = 110000...00,

a’ = a + b = 011010...10. (6.2)

. o i n?_) (o 2l IS P
| The group of d, is: G(d)) = &, G(a,) = Z0/:8, 15 n > U ([3]).
| For n = 7, 11, 15,... let e be the s.o. [1, }(n-1)]

code with generator matrix




e SR At P41 a8 o s = 2 = e — .
it e AP B W AN L B s 793 e -

s g e

fiet ! EREL iy
1 1 1 1
en:
L
IR o 11
15 1 1 1 1 18|

e, has deficiency 3, weight enumerator {—,[(.‘I.+x2)(n'l)-/2

+(l—x2)(n'l)/2] + 2(n—3)/2x(n+l)/2’ and dual code

e, = e Y (cte, ), (N

[as

where c=1=1l...1. The grow is: (;(07) = (.;.['3(2) ~ P58 (7), of
, order 168; (}(en) = Zg(n—?’)/a'gé(n_l) if n > 7([341).
B | For n = 8, 12, 16, ... let E be the [n,in] self-

, dual code dnU (a+dn), i.e. with genorator matrix

F gt ol 1
E |
! ARSI
| .
| E
1° 4 TR I
T ]
L 1 il ) 1 - .
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For Eg see (2.1). The weight cnumerator iz %[(1+x2)n/9

in- ®
+(l—x2 n/2] o @t lxn/2. The group is: (y(Eg) = QG%(Q), of
L -
order 1344; C(En) =75 l-sin if n > 8 ([347).

Note: In [34], Egs Epps Eig» B, were called
Ags> Biss Eigs Ipg respectively. From (6.1), (6.1)' and
the fact that En is self-dual, we have:

’

Lemma 6.3 Any codeword of dt is equal to one of O,a,b, or a
(modulo d_); any codeword of et is equal to O or c(modulo e );
and any codeword of E; is equal to O (modulo En)'
Cor. 6.4 If Cis a s.o. code containing E as a subcode,
then C is decomposable.

These codes are important because they provide
a canonical form for codes generated by codewords of weight h,
given in Th. 6.5. This result is the basis of the classification
in [34] and is used again in §§7,8. The result was derived
independently by J. H. Conway (unpublished).

Theorem 6.5 An indecomposable, self-orthogonal code C of

length n which is generated by codewords of weight 4 is either
dn(n S W56 o )5 e, or Eg.

Proof: Let I be the subset of the n coordinate indices with
the property that there exists at least one vector in C with

1 on an indéx in I. We say that C is of type H if I can be
partitioned into pairs in such a way that every vector in

F' of weight 4 with ones on any 2 of these pairs is in C. .
If C is of type H, |I| must be even. Note thal a code 1is

of type H iffit is a d_ with n > 4.

e = ——
Sl Ty a—— S T T

o e L el

T o TH U T  R N S T R T U G TP T
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Consider anyC. If dim C = 1, C ius equivalent to
dh' If dim C =2, C is equivalent to d6. Iff dim C 2.3,
C contains a d6 and hence must contain a dn of maximal
dimension. Denote thissubcode by T. If C = G, we are
finished. So suppose C # C. Then ‘here is a vector v of
weight 4 in ¢ - C. Since v is orthogonal to all vectors i:
C we have the following four possibilities.
a) Vv has no coordinate indices in 1I.
b) v has 2 coordinate indices in a pair of T,
c) v has 3 coordinate indices in I, no two being in a pair
of I.
d) v has all U coordinate indices in I, no two being in a
pair of I.
Since C is indecomposable, case c) implics that C = S and

case d) implies that C = kg. Case b) is not possible sinc

v could then be adied to C contradicting its maximal dimension.

Case a) is not possible since C would then be a direct

summand .

Cor. 6.6 The only seclr-dual codes which arvc generated by

codewords of weight 4 are By & ... & Eg.

Our notation for describing the gencrator matrix
of an indecomposable gelf-dual code C with minimum distance
equal to 4 is as follows. We take the maximum numbor of
linearly independent codewords of weight 4 as the top left-

hand corner of the generator matrix. By Th. 6.5 and Cor. 6.1




this has the form drl ¢ ... & er 4 e7 B spa 1 e7

(with m copies of e7), or drw"'drz é? for short, for suitable
ryseeesTy,m. The generator metrix is

e A — =y
b a,
il
i 0
d
a1 "/ 0
5n - § e
2 0 7
e,
| {
4 -y
9 weight > 6

It is convenient to use the same symbol (d , ers atelhs)
both fur the code and its generator matrix. Here y is called
the gap of C, and § = £ + #m + 5y is the deficicncy of the
subcode generated by codewords of weight 4. The last § rows
have weight > 6. If u is one of the last § rows, by Lemma 6.3
we may assume that under each dr, u is one of 0,a,b, or a’
(see(6.2)), and under each es, U is elther O or c.

To avoid writing the generator matrix in full we
adopt a shorthand notation, best explained by two examples.

The code A, of §8, with generator matrix given in (6.8)

e 2o s

T e R




P N R R s oot
3 - e ek et

_")’1:

,,,,,,,,,,,

] 7=

f=—

generator matrix given in (6.9)

12

will be written d,'ijg/ab/ba; and the code J,, of 88, with

00

00

00

10

| ol o] O] o

O Of ol O] ©

ol

v

ll_J

(6.8)

(6.9

]

e e i i
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will be written d8e$ + 2/bcol0/boc01/a0°1°. The explicit

form of the generator matrices for indecomposable self-dual

codes of length < 20 can be Tound in [34].

It seems difficult to find a formula for .the number
of self-dual codes of length n and minimum distance 4.
However, the next theorem does provide a useful check on
the enumeration of some of these codes.

For n = 4m, let O denote the class of self-dual
codes of length n with the property that the codeword 1 is
the sum of m disjoint codewords of weight 4. For CeO), let
h(C) be the number of ways of writing 1 as a sum of m code-

words of weight 4, and let

Il
T
S
=
1
-
=
i

1] .
2 S L T O I ¢

Theorem 6.10 An explicit formula for g  is

m ofm
m- y
1i=0 +

where

ﬁ (2J+1).

j=1

<
1]
'._I

-
<
]

= 3,811, 050.

[
o
o]
4]
=
t
l—l.
e}
(=
[}
©
=
c
0
1i
(@)Y
s
no
I~
I
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Proof By Cor. 3.2, the total number of self-dual codes

containing the m codewords

: RN

is v = :ﬂl (2j+1). Each of these codes contains a certain
number 23: where 1 = 0,1,...,m, of codewords of weight 2.
These codewords come in pailrs, as each block of 4 coordinates
contains O or 2 codewords of weight 2. Il one of these blocks

contains 2 such codewords they can be chosen in 3 ways:

1100 & 0011, 1010 & 0101, or 1001 & 0110. Therefore

i m
i, i . ; i
Vo = iﬁb > 1 P-4’ PELAT G = 2o
i=

Inversion of this recurrence (cf [36,pnl49]) gives the desirea
result.

To calculate h(C), it is sufficient to look at
the subcode of C generated by codewords of weight 4. It

is easily seen that:

(4n-1)(%n-3)...5.3.1 4if U|n

h(d,)
0 otherwise

h(e7) = @ h(Eg) = 7,

T

e T SR
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h(d, © d, @ ...)=nh(d, )h(d, )...
1 2

As an example of Th. 6.10, for n = 8 there is
one code E8 i) 08, the number of codes equivalent to E8 is
30 ([34]), and so 6g = 7.30, @g = 6, which agrees with Th. 6.10.

For n = 24, 15 codes from Table II are in (@4’ namely 3E8,

2F;,, Bg @ Eigr Bg 0 Fig Apue Cour Fouo Four oy tow
L24’ MEM’ 024, Tgu and Vgu. Again the result agrees with
THRNG IR

§7. Self Dual Codes of Length 22

Theorem 7.1 There are 25 inequivalent self-dual codes of

length 22, 17 of which are decomposable and 8 indecomposable.
These codes are shown in Tab.e I, where for each
code C we give:
(i) either its direct sum ‘ecomposition LGS s
decomposable, or a generator matrix in the notation of §6

if C is indecomposable; (ii) the order of the group G(C);

(1i1) the number of codes equivalent to C, written as a

multiple of

STIPNSING ST S RO = 13,749,310,575;

Yoo

(iv) the weight distribution a;= Qoo_y (1=2,4,...,10), .

omitting oy = Qo = 1.
For codes of lengtn <20 appearing in Tables I, IT

we use the notation of [341. Table I also gives the number

of codes with minimum distance ZM, and the total number.

il R o s e "
TR Ty Saqnr e
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These are in agreement with Th. 5.3 and Cor. 3.3. Further-
more the sum of the weight enumerators agrees with Th. 4.1.
Theorem 7.1 is proved by the same method as Theorem
8.1, except that 7.1 is simpler. We omit the details.
Notes on Table I G22 is obtained from the Golay code G2M

by writing that code as
G2M L G(Oo)kj G(Ol)\J G(lo)&J G(11)J

according to the values of the first two coordinates. Then
G22 is G(OO)\J G(ll) with the first two coordinates deleted.
The weight distribution of G22 is uniquely determined
(given that its minimum distance is 6 ) from Th. 2.5, or can
be obtained from the tables on page 80 of [8]. The group
of Gy, is twice m22.

U22 has generator matrix enclosed by the double

line in (7.2).

!

i

Py |
[ i
1

U,

oo and 224: i \

(7.2)
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§8. Self Dual Codes of Length 24

Theorem 8.1 There are 55 inequivalent self dual codes of

¥ o 7
T pom o s s A T T L M e RN L st bk g -
i Pk KRSt 3 TRy e b el L R e
T S — ]
i

length 24, 29 of which are decomposable and 26 indecomposable
(Table II; for y,, see Eq. (4.2)).

Proof. First we find the dccomposable codes a:: direct sums

¢or shorter codes. The groups of these codes are obtained
from Lemma 2.4, [34], and Table I. The indecomposable codes
are then classified according to minimum distance. By lemma 5.1
there is no indecomposable code with minimum distance 2. It
is known [33], [39] that the Golay code GEM is the unique
code of length 24 and distance 8.
Now suppose the minimum distance is 4. Let C be
an indecomposable self dual code of length 24 and distance X,

and let

(8.2)

be the maximal subcode generated by codewords of wcight U(§6).

C’ has gap vy = 24 - ry-...-r, - 7m, and deficiency & = £+ sm + 5.
Our method is to consider each possible form (8.2)

for C’', and to find all ways of adding 5 linearly independent

generators to C’ so as to obtain an indecomposable self dual

code C of distance 4. We call such a code C (indecomposable,

L

self dual, minimum distance 4, and with all codewords of welgnt

contained in the subcode C’) an extension of C/. C must
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contain the vector 1. So for each C’ we must find all its
extensions C. ILemma 6.3 is our chief weapon. Having found

a C, we compute its group ((C), and then the number of codes
equivalent to C is 24!/order of ((C).

Lemma 8.3 Cr = dgu(with ¥y =0, 5 =1) has a unique extension
C = E24 = dgu/a (in the notation of §7).

Proof. We must add 1 vector, u say, to C’. By 6.3 we may
assume u is a = 1010...10, b = 1100...00, or a’ = 0110...10.
But a’ is equivalent to a, and b has weight 2, so w=» may takc
o =N

The group of EQM is le ‘3

2 12°

Lemma 8.4 Cr =d (4 < r < 22) has no extension C.

Proof. By 6.3, the generator matrix of C has the form

L =
dr 0
u = a
k)
vV = b
0 Q

where u and v may be absent. If both are absent C is decomposable.
If one is absent, Q has deficiency 0, length 20, and distance

6, which is impossible by Table III. If both u, v are present,

Q has deficiency 1. By Table III there is a [20, 9, 6] code Q.

But the next lemma shows that this Q, and hence C, doesnot

contain 1, a contradiction.




Lemma 8.6 d.dyy_ . (with y = 0, 5 = 2) has a unique extension

Table III, which is frequently used in the proof %

of Th. 8.1, shows, for each dimension k, the length n. of

O ':'I!
the shortest s.o. [no, k, 6] code. %
Table IIT g
k 1 2 3 4 5 6 7 8 9 10 11 1o 3
ng 6% 10*% 1p2% 14 15 16* 18 19 20 21 22% ohx

*: code is unique.

This table was constructed by direct search, with the help

i T e e Y S8

of [18]. We omit the details. An asterisk indicates that

the code is unique. The asterisk for k = 6 follows using

TR i

the known list of [16, 8, 4] self dual codes [34]. The
asterisk for k = 11 is from Th. 7.1.

Lemma 8.5 There is no s.o. [20, 9, 6] code containing 1.
Proof. 3Suppose such a code D¢ exists. By Cor. 3.2 therc is
a self dual [20, 10, d] code D containing Dr. If d = 4, D
must be one of the codes E2O’ Ksq9 Ly s Méo, R2O’ Spq OF [347.
Suppose D = M,4. Let Vl""’VS be the 5 vectors of weight
b in MEO‘ Then we may assume MQO is generated by D’ and Vi
Therefore the following vectors are in D’: vy Vo, vy o+ v3, VeV
hence v1 + Ve + v3 + vy = A v5, hence v5. But v5 has weight

L, a contradiction. The other possibilities for D, and the

case d = 2, are similar.

d.d _./ab/ba provided r = 8, 12. (This gives the entries

Ayys Hy) of Table IV).




Lemma 8.7 drdq with 8 r + s < 24 has no extension.

Lemma 8.8 di has a unique extension C = Y, shown in (8.9).

-
—
—

 —
—
-—

-
a—

e
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—
—

L-———"—""
wEREGETN @

(8.9)

Proof. The generator matrix for C must have the form

1111 0 0
0 L Jk kit 0
a 0 [ q
b 0 r
0 a S
3
0 b t
0 0 o) A LR

N

where Q is the unique [16, 6, 6] code mentioned in Table III.
To describe Q, let xy,...,x, be bilnary variables. As in

describing Reed-Muller codes, we identify each of the 216
polynomials f(xl,...,xu) over GF(2) with the corresponding

vector of length 16. The first order Reed Muller [16, 5, 8]




- 29 -

4
code R consists of all linear functions 24 o; Xy TR
where o35 B =0 or 1([311§5.5). Then @ i?k‘vxxlx2+x3x“+R), S0l We

: may take as generators for Q:u=l, V=Xys W=X,, X=X3, Y=X),

BT A

z=xlx2+x3xu. The group of R is the general affine group Ca”(z)
consisting of all transformations (xl,xg,x3,x4)-{xl,xg,xa,xh) ERE® ¢
3 where A is an invertible 4xl4 binary matrix and b is a binary

L ~tuple.

3 It is now straightforward to calculate thc group
5 ! of Q, and to show that there is essentially only one way

e | to choose q,r,s,t, namely q = X1X3’ I = XpX), S = X{X),
% t = X,X,, as shown in (8.9).

The group cf YQM is as follows. To every permutation

T of the first 4 coordinates there corresponds a permutation
{ gé}(Q) such that meg fixes YQA' Similarly on the second set
| of 4. Also the two sets of L4 may be exchanged. Finally
there are the 16 permutations generated by X %y 1
(1=1,...,4). Thus |G(v,,)| = 26%.2.2",
The remaining codes in Table II with minimum distance
! I are found in the came way (although none are as complicatad
as YEM)' It is worth pointing out that dg has thrce lnequivalent
extensions: 024’ L24’ M24; and dg, di vach have two.
Q3

4d6 has a unique extension wga

shown in (8.10),

T NI Ay o v o) e s e ¥, B




S TR TR AT e

as i s

ihasiat e bt s

AR

L e il iR e e R o i i el T e T i e 2T b iR e

*sosserd £ 03Ut wﬁmm

("°u)4) s03 serepTRUEY  *(h2'*-6T) TeF e sntd o sus pue s,Tp sus on

Butpuodsaxzod (QT AT 9T ST #T €T)(2T TT 0T 6)(g L 9 G) (4 € 2 T) S4o0Tq 4
03uT ATTBANIBU PePIATDP axe 4 Jo 12 02 T S81BUTPJIOOD UL
.Admsvw FUT1eINOTEO £Q S8pPOD eS8yl JO

dno13 oyj3 SUIPUTI JI0J POY7]awW TeIsuaZ auj mumhpmzﬁaﬁ TIBUS aMm pue

1
O - -
o
i
Fal 0l E |
! _ l (I | |
i ] 1! ! | i
] ) b
by P !
_ |t \Sul ()
T4 ‘
(ot°g) : Vi _
LI Y
R I | i
o T
2T

1
TN RurRrENSIU NS ACAUNN (S L)ISAE

i e i b T e e e B R R

t

o9




B T

L, ok

o
(i) For each dr block, those permutations in Z;I‘—l_é

r

which act inside the block, possibly followed by a permutation
of the gap (and similarly for cach 07 block, if present).
Thus Q(w24) contains a Klein U-group 29'82 acting on each d),
block, e.g. (13)(24) and (12)(34) fix the code and generate
a Klein U-group on block 1. Again (13 15)(14 16), (13 17)
(14 18), (13 14) (15 16), (13 14) (17 18) generate a Z5-3,
on block 4.

(1i1) Permutations of the blocks, possibly followed
by permutations inside the blocks and inside the gap. Thus
in w24 a group 33 acts on blocks 1,2,3 as follows. Convention:
Tep means first apply m, then p. Let Tio = (block 1, btlock 2)
= (15)(26)(37) (48), etc. Then

o © (23)(67)(9 11)(19 21)(22 24)

T1p3° (123)(67)(13 14)(19 23 21 22 20 24)

fix the code and generate an 83 on the blocks.

(iii) Exceptional permutations, not of class (i),
which act inside each block, possibly followed by a permutatcion
of the gap. Thus Q(WQM)COntains the exceptional permutation
(1 2)(5 7)(9 11)(13 14)(19 22)(20 23)(21 24) of order 2. No other
permutations of W

ol are possible, and the order of Q(w is

2l )
uj.(22.3t).3z.2.

The only codes contalning exceptlional permutations

are 5‘2“’, WELI-’ X2LL (8.11) and YELI-.




Finally it remains to consgider the case of minimum
distance 6. Let C be a [24,12,6] self dual code. By deleting

@ coordinates from C we obtain a [22,11,4] self dual code D, which
must be in Table I. It is straightforward to show that the

only possibility is D = U22, and further that there is a
unique way to add two columns and one row to the generator
matrix of Uy, to obtain C, as shown in (7.2). Therefore C
is unique, and 1s denoted by 224.

To simplify calculation of the group of 224, we

give an alternative construction for this code based on the

Golay code G,y using the notation of Todd's paper [42].

Tet Q= 1{»,0,1,...,22} be the coordinates of Gpy, -
A subset of O giving the location of the 1's in a codeword
of Gy, of weight 8 is called an octad. A list of the 759
octads is given in [42]. O may be partitioned into 6 sets

of 4(called mutually complementary tetrads) such that the

union of any two tetrads is an octad, for example (using




SRR

_33_

Todds notation for the octads).

Cga e S C e D o i RS e

» 01233514 17, 4 13 16 22, 6 7 19 21, 9 10 15 205 & 112 el

(*)

Associated with any sct of mutually complementary tetrads is

o s e M e

, a set of 64 non-special hexads (i.e. 6-sets of (1) with the

Sl

! properties: (i) A non-special hexad is not contained in

any octad; and (ii) let H = (ala2a3aua5a6) be any non-special.

i

hexad, choose any point, say aqs of H, and find the unique

octad a2a3a4a5a6b2b3bu containing the other 5 points of H.

L g

Then alb2b3b4 must be one of the tetrads.

A method of constructing the non-special hexads

= L

is given in [42]. A set of 1P non-special hexads associated

with the tetrads(*) form the rows of (8.12). These rows do

bR il

, indeed generate a [24, 12, 6] code, which therefore must be
Zyy . The group of this code is that subgrogp of méu which
! fixes the set of mutually complementary tetfads. This is the
group G5 described in [42], of order 210.33.5 and index 1771
| in mga. The permutations and character table are given in
| ; Table VII of [L2]. :
This completes the enumeration of the codes and
the proof of Theorem 8.1.
As checks on table II we verif 'ed the number of

codes of minimum distance > 4 (5.3), the number of codes

J

% with weights divisible by 4 (3.12), the sum of the weight

E‘i
enumerators of the latter codes (4.1), the total number of 3
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Cor.8.15 Le% C be an indecomposable self dual code of

length 24, with weight distribution a; . Elther ag = a;5 = 0

or ac = 6’#, 1o} = 060,

10
Prool'. 1. [rom Table II; or

2. From Th. 2.5 (using the version in [41)

3

the weight enumerator of C ig, for sultable £, m,

(14x%)12 - 1052 (14x2)8(1x2)2 4 ext (1) (1-x2) Y 4 mx® (1-x2)C

= 1+ (£-6)x" + (ma6t)x® + (399-42-6m)x® + 15(n64)x 10 4. .
SO qy5 = 15a6. But the codewords with weights divisible
by 4 form a subcode of C of dimension 11 or 12, so og + apy 0
or 210. This complctes the proof.
Remarks (1) The latter proof can be used for lengths 8 and 16
to decide which of the pPossible weight enumerators given by
Th. 2.3 can be realized by codes.

(2) Note that Noos Pops K,y can also be written
e7615/...,eil/...,d6e7ell/...
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